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A B S T R A C T   

A common practice within the current regulatory framework for gas distribution uses an approach where op
erators report their network emissions by applying an average emission factor for all leaks, sometimes sorted by 
pipe material and type of assets. Such an approach has two drawbacks: first, it does not account for the speci
ficities of the gas systems and the maintenance processes of the operators; and second, it does not enable the 
prioritization of large leaks that is key for an effective emissions abatement program. This article describes a 
method using a mobile leak detection and quantification system to assess methane emissions from a gas dis
tribution network and to reduce them by accelerating the detection and repair of larger leaks. The approach 
allows for data-driven system-wide emissions quantification that is specific to the network and not subject to 
operator’s leak detection practices that may affect their traditional emission factor-based reporting. Furthermore, 
we show that for a sensor with a sufficiently low detection limit, the calculated emissions are independent of the 
precision of the measurement if the uncertainties are correctly addressed. Such a result is important because it 
assures that methane emissions estimates are not biased and can be used to assess the performance of abatement 
programs. Finally, we illustrate how the approach can be practically implemented through a program where the 
largest leaks are rapidly identified and repaired to abate methane emissions while minimizing costs.   

1. Introduction 

Numerous studies have been performed to update methane emission 
estimates initially established by the Gas Research Institute (GRI) for the 
US Environmental Protection Agency (EPA) in 1992-1996 (Harrison 
et al., 1996) and to provide a baseline for abatement efforts. They all 
demonstrated the same pattern; most of the leaks are small and generally 
only contribute marginally to the overall emissions while a relatively 
small number of leaks can be three to four orders of magnitude larger 
than the median leak and therefore account for most of the emissions. 

For example, Fig. 1 displays the results of measurements performed 
by GRI in 1996 and by Washington State University (WSU) in 2015 on 
the pipelines of gas distribution systems (Lamb et al., 2015). It shows 
that leak sizes vary from less than 10− 2 ft3/h up to more than 102 

ft3/h2(a range of more than four orders of magnitude), with a small 
number of large leaks dominating the total emissions. In fact, this phe
nomenon is even more patent now; GRI reported that 20% of leaks, 

greater than 10 ft3/h, accounted for about 80% of methane emissions 
while WSU observed that only 2.2% of leaks were greater than 10 ft3/h 
but they still represented more than 50% of total emissions. 

These results were recently summarized by Brandt et al. (2016) (see 
Fig. 2), who demonstrated that across assets of the natural gas supply 
chain as well as across component types, most emissions were owing to a 
small fraction of leaks, typically 5% or less, that are generally called 
Super Emitters. The term Super Emitter is sometimes used in absolute to 
designate the largest sources of a territory such as in Duren et al. (2019) 
or greater than a specific threshold such as in Collins et al. (2022), 
sometimes as a qualification of specific facilities that release more gas 
than others such as in Zavala-Araiza et al. (2017) or a larger proportion 
of the gas they produce (Zavala-Araiza et al., 2015). We use it here, in 
the spirit of Brandt et al.’s article, as a relative designation representing 
the largest leaks of a distribution system. In that definition, Super 
Emitters in distribution systems may not be considered as large for other 
facilities or across a territory. This skewed leak size distribution 
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represents both a challenge and an opportunity: a challenge because any 
attempt to characterize the methane emissions of a system must collect 
large samples to correctly capture the portion of large leaks; an oppor
tunity because substantial reduction can be accomplished with an 
optimal survey and repair effort if these large leaks are identified 
rapidly. 

2. Methods 

2.1. Gas leak detection and emissions quantification 

This study used a Picarro vehicle-based mobile platform that iden
tifies the natural gas plumes induced by pipeline leaks as they propagate 
in the atmosphere and intersect the path of the vehicle. The concen
trations of the two main compounds of natural gas: methane and ethane, 
are established by a parts-per-billion sensitivity gas analyzer based on 
Cavity Ring Down Spectroscopy (CRDS) (Crosson, 2008) four times per 
second providing a good spatial resolution of the concentration signal. 
The system also measures GPS position, wind speed and direction, at
mospheric conditions (pressure, humidity and temperature), and uses 
algorithms to infer the location and flow rates of detected sources. The 
ratio of ethane and methane concentrations, specific to the utility’s 
natural gas, is used to identify and discard biogenic methane sources 
that do not contain ethane. Each area of the distribution system is driven 
four to six times, typically at night when the atmosphere is more stable, 
and over at least two nights to take advantage of wind shifts to maximize 
the probability of detecting leaks downwind of the gas infrastructure. 
The small proportion of pipeline segments still not covered by the 
measurement system, generally less than 20%, are flagged and 
accounted for in the emission calculation by extrapolating results ob
tained on covered areas. 

As the vehicle transects the gas plume the emission (flow) rate of a 
source is calculated by a control volume approach (Conley et al., 2017). 
The methane flow rate Q is derived from the volumetric flux equation: 

Q =

∫∫

[C(y, z) − C0]⋅u(y)dydz, (1) 

where C is the concentration at each measurement point of the cross- 
sectional area of the plume and C0 is the background methane concen
tration. The vehicle as it drives downwind of the leak samples the con
centration along a line through the plume in the y direction. The height 
of the plume, z, is inferred from the measured width in the y direction 
and the atmospheric conditions. The quantity u is the component of 
wind speed, measured by the anemometer, normal to the path of the 
vehicle. 

The method relies on the vehicle to make multiple passages through 
the network to increase the probability to detect leaks. Multiple de
tections of a plume originating from a source are aggregated using a 
geospatial clustering algorithm such as DBSCAN (Ester et al., 1996; 
Birant and Kut, 2007), HDBSCAN (Campello et al., 2013), or OPTICS 
(Ankerst et al., 1999; Agrawal et al., 2016). The parameters of the 
clustering algorithm indicate the separation distance scale at which the 
same plume may be detected over multiple passages. The optimal scale 
that achieves as close as possible to a 1-to-1 relationship between a 
cluster of detections and a gas leak, was determined through fitting 
procedure using hundreds of thousands of detections linked leaks 
confirmed by gas operators worldwide and is typically 25–30 m. An 
example of the geospatial clustering is shown in Fig. 3. Detecting a 
plume multiple times from a single source also serves to improve the 
precision of the emission estimate. Using the associations determined by 
the clustering algorithm, multiple independent measurements of plumes 
from a given source are averaged to report an estimate for the leak size. 

2.2. Validation of the measurement 

A study performed by NYSEARCH between 2015 and 2017 on three 
mobile leak detection systems provided a solid validation data set 
(D’Zurko and Mallia, 2017). The test covered three orders of magnitude 
in leak size consistent with observations in the field. A similar validation 
study using the Picarro system has been performed annually since 2018 
at the Pacific Gas and Electric Company (PG&E) Gas Safety Academy in 
Winters, CA. Controlled leaks were setup in various above-ground and 
below-ground configurations representing leaks typically found in a 

Fig. 1. Cumulative distribution of leak sizes for leaks in a gas distribution 
network reported by Harrison et al., GRI (1996) and Lamb et al., WSU (2015). 

Fig. 2. Share of methane emissions contributed by top 5% of emitters. 
Reprinted with permission from Brandt et al. (2016). Copyright 2016 American 
Chemical Society. 
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distribution network. An inline mass-flow controller provided a precise 
measurement of the actual flow rate of the leak. Data were collected by 
the Picarro system according to the standard driving protocol which 
includes six passes by each leak with three in each direction. In addition 
to the controlled testing, 53 below-ground leaks that were identified by 
the Picarro system on PG&E’s network were validated using using 
Bacharach’s High Flow sampler following a protocol assuring that all gas 
was captured. The field validation exercise focused on leaks that were 
measured by the Picarro system as more than 5 ft3/h. The purpose of 
these field tests was to verify that the accuracy observed in a broad range 
of conditions was consistent with the measurement performed during 
the validation tests in application of the method developed by 
NYSEARCH in 2018 with the support of PHMSA (PHMSA, 2019). Fig. 4 
summarizes the leak flow rate as estimated by the mobile systems 
compared to the actual values as measured with a High Flow sampler or 
as set in the case of controlled leaks. It was observed that the mobile 
quantification systems were able to estimate the order of magnitude of 
the leak flow rates: 78% of the data points were within a one order of 
magnitude band – a factor of 

̅̅̅̅̅̅
10

√
times greater and 

̅̅̅̅̅̅
10

√
times less than 

actual values. 

3. Theory and calculations 

3.1. Emissions measurements in a distribution network 

Since 2014, PG&E has used the Picarro vehicle-based methane 
detection system for its leak survey program (Redding and Glaze, 2015). 
Any portion of PG&E’s distribution system is inspected at the minimum 
every three years, some areas being surveyed as often as every year. In 
2018, to further reduce methane emissions, PG&E introduced a Super-
Emitter Program, which implemented an additional survey focused only 
on large leaks. Performed every year on the entire distribution system, it 
aims to detect only leaks greater than 10 ft3/h and prioritize their repair 
to take advantage of their disproportionally large contribution to 

methane emissions. Based on the leak size distribution observed by 
WSU, rapidly detecting and repairing these leaks could lead to up to 50% 
emission abatement. However, in order to correctly assess the impact of 
the program, special attention must be paid to the representation of 
uncertainties because, even if the quantification system is evenly cali
brated, i.e. it has a symmetrical probability to overestimate or under
estimate the flow rate of a given leak, the skewed leak size of the gas 
distribution system means that, for a measured value of a larger flow 
rate especially greater than 10 ft3/h, the actual leak size has a much 

Fig. 3. Example of geospatial clustering to associate one or more detections with a source. Each point represents the location where a single plume was detected. 
Measurements that are clustered together are shown by like colors. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 4. Validation testing unity plot. Quantification system measurements 
versus actual leak sizes measured with a High Flow sampler that has an un
certainty of less than 30% (PHMSA, 2019), or as set using a mass-flow 
controller in the case of controlled leaks with a precision much better of the 
quantification system to be validated. 
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higher probability to be overestimated than underestimated. 
Fig. 5 illustrates this phenomenon for a leak measured by the mobile 

system as 1 ft3/h. The measurement uncertainty spans one order of 
magnitude (A), consistent with the validation testing. Because of the 
heavy-tailed leak size distribution, the positive interval, Δ+, is much 
smaller than the negative interval Δ− . This corresponds to approxi
mately 70% chance to overestimate the leak compared to 30% to un
derestimate the leak. Therefore, the most probable value corresponding 
to the measurement will be less than the measured value. 

The mobile system covers a large range of leak sizes from less than 
0.1 to more than 100 ft3/h. The low Minimum Detection Limit (MDL) 
associated with a consistent quantification precision across the full 
range of leak sizes in a distribution network is key to correctly capture 
the uneven proportion of small and large emitters. In addition, the 
quantification capability is used to point out larger leaks avoiding the 
operator the cost of investigating all methane indications. The MDL is 
not a fixed threshold, but varies as a function of measurement conditions 
such as terrain, wind speed, and atmospheric stability (Conrad et al., 
2022). It must therefore be much lower than the leak sizes that sub
stantially contribute to the total emissions to avoid cases of missed de
tections and mischaracterization around the MDL that will affect the 
overall emissions assessment. Using a detection system with an MDL 
close to the size of the large leaks is not adequate to correctly identify 
them and evaluate the overall emissions. 

3.2. Measurement based emission factors 

To evaluate the impact to the system-wide emissions where only the 
largest leaks are prioritized for repair, leaks and detections are classified 
in four decade bins from 10− 2 to 102 ft3/h. These bins can be adjusted as 
a function of the threshold used to define a large leak. The probability 
for actual leaks to belong in each bin can be calculated using Bayesian 
inference: 

P〈Ai|Bj〉=
P〈Bj|Ai〉⋅P〈Ai〉

P〈Bj〉
, (2) 

where Ai is the statement: the actual size of the leak is in the bin defined 
by [10i, 10i+1[ and Bi is the statement: the leak size as estimated by the 
mobile system is in the bin defined by [10j, 10j+1[. The indices i and j vary 
from − 2 to 1; if i or j = 1 the interval is [10, ∞[, if i or j = − 2 the interval 
is [0, 0.1[. 

P〈Ai|Bj〉 represents the probability for the statement Ai to be true if 
the statement Bi is true. 

P〈Bj|Ai〉 represents the probability for the statement Bj to be true if 
the statement Ai is true. 

P〈Ai〉 represents the probability of Ai to be true. 
P〈Bj〉 represents the probability of Bj to be true. 

P〈Bj〉 is calculated using the formula: 

P〈Bj〉 =
∑

i
P〈Bj|Ai〉⋅P〈Ai〉. (3) 

For this analysis, the experimental data of WSU for distribution 
mains and services have been fit to a lognormal distribution, shown in 
Fig. 6. The average flow rate assigned to each bin noted here as EF(Ai) is 
obtained from the fit to the WSU distribution and is summarized in 
Table 1. 

The validation data described above were used to represent the 
precision of the mobile quantification system. The distribution of errors 
observed during the tests was modeled as a lognormal function with a 
width, σ = 0.95. The matrix [vij] defined as vij = P〈Bj|Aj〉 is represented in 
Table 2. From here, we calculate the inverse matrix [v− 1

ij ] shown in 
Table 3. 

In addition, the flow rate to be assigned to a leak measured as in a bin 
Bj is obtained by the formula: 

EF(Bj) =
∑

i
P〈Ai|Bj〉⋅EF(Ai). (4) 

Table 4 shows the percent of measurements and corresponding 
average actual flow rate in each order-of-magnitude bin based on the 
direct measurement. The impact of the precision of the measurement 
system can be seen here; the number of leaks detected as large leaks 
(> 10 ft3/h) is 5% compared to 2% of actual large leaks. Correspond
ingly, the average flow rate of leaks detected as large leaks is 10.0 ft3/h 
compared to 25.2 ft3/h if each leak could be perfectly classified in its 
respective bin. 

3.3. Estimating total emissions 

The emissions associated with each bin is given by: 

Emissions(Bj) = N⋅P〈Bj〉⋅EF(Bj), (5) 

where N is the total number of leaks found and N ⋅ P〈Bj〉 is the 
number of leaks measured in the bin Bj. 

The total emission of the network may then be calculated as: 

Emissions =
∑

j
Emissions(Bj) = N⋅

∑

j
P〈Bj〉⋅EF(Bj). (6) 

When replacing EF(Bj) from Equation (4) into Equation (6), we 
obtain: 

Emissions=N ⋅
∑

j
P〈Bj〉 ⋅

[
∑

i
P〈Ai|Bj〉 ⋅ EF(Ai)

]

, (7) 

Fig. 5. A single leak measured at A = 1 ft3/h with a ±
̅̅̅̅̅̅
10

√
x uncertainty from a 

skewed distribution will have a larger probability to be overestimated (Δ− ) than 
underestimated (Δ+). Fig. 6. Experimental data from WSU fit to a lognormal distribution.  
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then replacing P〈Ai|Bj〉 from Equation (2) into Equation (7), we 
obtain: 

Emissions=N ⋅
∑

j

∑

i
P〈Bj|Ai〉 ⋅ P〈Ai〉 ⋅ EF(Ai), (8) 

with ∀i,
∑

jP〈Bj|Ai〉 = 1. Then: 

Emissions=N ⋅
∑

i
P〈Ai〉 ⋅ EF(Ai)=N ⋅

∑

j
P〈Bj〉 ⋅ EF(Bj). (9) 

We observe from Equation (9) that the total emissions estimated 
through direct measurement are equal to the actual emissions inde
pendently of the precision of the measurement if the MDL is low enough 
to cover the full range of emissions and if the prior (estimated distri
bution of leak size) and uncertainties are correctly considered. On the 
other hand, ignoring the impact of uncertainty on predicted emissions 
would lead to a very different result. For the example presented here, the 
estimated emissions would be 60% greater than the actual emissions as 
shown in the example presented below. Finally, the four-bin approach 
implemented for the purpose of capturing methane abatement related to 
the early detection and repair of large leaks can be expanded to any 
number of bins towards a continuous approach as presented below using 
Monte Carlo simulations. 

3.4. Monte Carlo simulations 

The simulation process starts by sampling events from the prior 
distribution, modeled from a lognormal fit to the WSU data with pa
rameters μ = − 1.36 and σ = 1.77. Each sample was then converted to a 
mobile system measurement by multiplying by a sample drawn from its 
precision as established earlier and modeled as a lognormal distribution 
with parameters μ = 0 and σ = 0.95. This process leads to the simulation 
of the mobile system measurement dataset for leaks following the prior 
leak size distribution. Fig. 7 shows the result of 105 simulated leaks and 
the resulting distribution of actual leak rates within each of four order- 
of-magnitude measurement bins. The 1-to-1 line provides a visual cue to 
help interpret the results. The higher point density on the left side of the 
1-to-1 line, especially for actual leak sizes above 1 ft3/h, illustrates the 
higher probability for the system to overestimate the leak than under
estimate it. The simulation confirms the Bayesian method described in 
the previous sections when the results are binned according to the 
measured leak size, [10j, 10j+1[. 

This approach may be extended to include any number of bins pro
vided a statistically significant number samples are generated in each 

bin. The result may then be represented as a continuous function which 
may be used to evaluate the most likely flow rate and uncertainty range 
based on any measurement provided by the mobile system. Fig. 8 shows 
a continuous function, which is a power law-fit to the simulation result 
separated into 50 log-uniform bins from 10− 2 to 103 ft3/h. 

3.5. Estimating emissions from unknown leaks 

In general, the mobile system will report more indications than there 
are leaks in the network. Although these indications usually represent 
real sources of methane, they may not be sources of interest for reporting 
of emissions - e.g. 3rd-party sources, natural/biogenic sources, or 
natural-gas vehicles. Furthermore, at PG&E, only below-ground (BG) 
leaks are of interest to the program as meter-set assembly (MSA) emis
sions are currently reported separately and characterized through static 
emission factors. 

A model for the probability that an indication was generated from a 
below-ground leak was developed and validated using a set of leaks that 
were confirmed through field investigation during the routine leak 
survey process. The model implemented a decision tree algorithm to 
determine a below-ground probability index based on properties of the 
detections such as methane and ethane concentration enhancement, 
calculated emissions, spatial profile of the concentration signal, and 
number of detections. Using this relationship, the total number of below- 
ground leaks in the network may be estimated and the reported emis
sions may be adjusted accordingly. Each detection is assigned a proba
bility to be related to a below-ground leak P〈BG〉 and its contribution is 
calculated as a function of its measured flow rate as: 

Flow(BG) = P〈BG〉⋅AdjFlow[Measured ​ Flow], (10) 

and the flow rate of all open below-ground leaks as detected with the 
vehicle is: 

TotalFlow(BG) =
∑

BG
Flow(BG) (11) 

Large gas distribution networks require a significant amount of time 
to be fully driven by the mobile system. At PG&E the 42,000 miles of 
mains and 3.6 million services are covered every year from January to 
December. These data do not provide a picture of the emissions at a 
point of time but rather a progressive scanning over the year. Detected 
leaks may have been open since the beginning of the year or for a shorter 
period. On the other hand, leaks may occur after the survey and produce 

Table 1 
Fraction of leaks and average emissions in four order-of-magnitude bins based 
on a distribution of leak sizes fit to the WSU dataset.  

Leak Bin Leak Size % Leaks Average Flow Rate in Bin (ft3/h) 

(ft3/h) P〈Ai〉 EF(Ai) 

A1 [10, ∞[ 2% 25.2 
A0 [1, 10[ 20% 2.8 
A− 1 [0.1, 1[ 48% 0.4 
A− 2 [0, 0.1[ 30% 0.04  

Table 2 
Probability a leak of size Ai is measured as size Bj. 

Table 3 
The probability a leak measured as size Bi is actually size Aj for a leak size 
distribution that follows WSU. 

Table 4 
Fraction of measurements and average emissions in four order-of-magnitude 
bins based on a distribution of leak sizes fit to WSU.  

Measured Leak 
Bin 

Leak 
Size 

% 
Measurements 

Average Flow Rate in Bin 
(ft3/h) 

(ft3/h) P〈Bj〉 EF(Bj) 

B1 [10, ∞[ 5% 10.0 
B0 [1, 10[ 22% 2.2 
B− 1 [0.1, 1[ 40% 0.5 
B− 2 [0, 0.1[ 33% 0.09  
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methane that must be accounted for. If the leaks appear linearly with 
time and the survey is performed equally along the year, methane 
emissions from leaks that opened after the measurement equals the 
overestimate of emission assigned to detected leaks when considering 
that they are open since the beginning of the year. Therefore, the annual 
emission of the system can be calculated from the number of leaks 
detected through the surveys as: 

Emissions =
∑

BG
Flow(BG)⋅[min(end ​ of ​ year, ​ time ​ of ​ repair)

− beginning ​ of ​ year].
(12) 

We have shown therefore that the methane emissions of a gas 
network can be obtained directly by using the flow rate estimates 
measured by the survey vehicles without the assumption of any emission 
factors. In addition, the measurement-based approach assigns a flow 
rate to every leak detected by the vehicle survey. This unlocks an op
portunity for gas operators to prioritize the repair of larger leaks and 
reduce methane emissions in an effective manner by leveraging the 
broad range and the skewed distribution of leak sizes highlighted in 
Section 1. 

4. Results 

PG&E in its Super Emitter Program uses the leak size estimates of the 
mobile methane detection system to identify large leaks in areas not 
scheduled for leak survey. Each leak that was measured by the mobile 
system as greater than 10 ft3/h is assigned with the emission factor EF 

(B1) = 10.0 ft3/h and leaks measured by the system as less than 10 ft3/h 
are assigned with the emission factor EF(B1) = 0.73 ft3/h. The large 
leaks are repaired in priority independently of their grade. Smaller leaks 
are repaired in application of the safety standard of the company. 

Table 5 illustrates an example of the implementation of such a pro
gram and the result of a theoretical case for a network that follows a 
WSU leak size distribution where 1,000 leaks are found during a 5-year 
survey (20% of the territory is surveyed every year). It assumes that all 
leaks are repaired immediately after they are identified. Leaks that are 
found through survey are therefore assigned with an average lifetime of 
six months and leaks on non-surveyed areas are assigned with a lifetime 
of the full year. 

In this example the first year is considered as a baseline. The total 
number of leaks in the non-surveyed areas are estimated by assuming a 
linear leak appearance over five years. The total emissions are estimated 
using 1.23 ft3/h from the average of the WSU leak size distribution. In 
the first year of a Super-Emitter Program, the non-leak survey areas are 
driven with the mobile system and the large leaks prioritized for im
mediate repair. This process results in a 16% emissions reduction 
compared to the baseline with only 10% increase in the number of 
repaired leaks. For the second year and later, the number of large leaks 
found is reduced because the annual detection leaves less time for these 
leaks to develop. The total emissions reduced is then 39% compared to 
the baseline with no additional repairs since the program accelerated the 
detection and repair of large leaks. The large leaks would eventually 
been detected through routine survey but would have stayed open for a 
longer time. Additional emissions reduction in the third year and beyond 
may be realized by a combination of lowering the threshold defining 
large leak or increasing the measurement frequency in order to reduce 
the time these large leaks stay undetected. 

5. Discussion 

The method presented in this article allows for the most probable 
estimate of all of the leaks for a given prior leak size distribution, in
dependent of the precision of the measurement method. In practice 
however, a specific network may have an actual distribution of leak size 
that is similar or different compared to literature. If network-specific 
measurements are available (ex. a utility that uses mobile data for 
routine leak survey), the actual distribution may be estimated from the 
measurements themselves. The actual leak size distribution P〈Ai〉 can be 
adjusted in such a way that P〈Bj〉 coincides with the measured leak size 
distribution. In addition to having a model of the actual distribution that 
is specific to the network, this approach also offers the convenience to 
modify the distribution over time to reflect changes in the network 
owing to emissions abatement efforts. However, it must be noted that 
the correction of the measured distribution, P〈Bj〉, for both measurement 
uncertainties and for attribution of indications to below-ground leaks is 

Fig. 7. (a) The result of a Monte Carlo simulation of 105 leaks in a gas distribution network. (b) The simulation result represented as a cumulative distribution of the 
actual leak sizes split into four order-of-magnitude bins based on the measured value. 

Fig. 8. A relationship between actual leak size and measured leak size for leaks 
in a gas distribution network. This relationship is called AdjFlow. 
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challenging because of the field validation dataset that it required and 
the small signal to noise ratio (i.e. below-ground leaks to MSA leaks and 
other false positives), especially for indications with small concentration 
enhancement (< 100 ppb). 

With their FEAST model Kemp, Ravikumar, and Brandt (Kemp et al., 
2016) have argued that it can be more cost effective to accelerate sur
veys with low-sensitivity tools detecting only large leaks than it is to 
perform extensive surveys aiming at detecting all leaks such as in
spections performed for safety. A key limitation of their approach, 
however, was the assumption that a low-sensitivity tool would only 
detect large leaks while, in reality, large uncertainties affect detection 
and quantification. Low-sensitivity tools may characterize a smaller leak 
as large or miss a large leak. Uncertainties would therefore substantially 
impact the effectiveness of their use for an accelerated repair program. 
The method presented here using an ultra-low MDL system, including a 
rigorous accounting for uncertainties, circumvents this limitation and 
supports the use of fast and sensitive detection systems for the estimate 
of total methane emissions and prioritization of repairs. 

CRediT authorship contribution statement 

Sean MacMullin: Software, Formal analysis, Data curation, Writing 
– original draft, Writing – review & editing, Visualization. François- 
Xavier Rongère: Conceptualization, Methodology, Formal analysis, 
Writing – original draft, Writing – review & editing, Visualization. 

Declaration of competing interest 

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interests: 
Sean MacMullin is an employee of Picarro Inc and François-Xavier 
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